인공지능(ML)
- [딥러닝] Tensorflow로 간단한 Linear regression 알고리즘 구현 2024.01.04
- AI 관련 용어 정리 2024.01.04
- [Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Generative AI Studio: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Create Image Captioning Models: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Transformer Models and BERT Model: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Attention Mechanism: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Encoder-Decoder Architecture: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Image Generation: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Generative AI Fundamentals Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Responsible AI: Quiz 2023.10.11
[딥러닝] Tensorflow로 간단한 Linear regression 알고리즘 구현
AI 관련 용어 정리
[Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Generative AI Studio: Quiz
[Google ML Study Jam] 생성형 AI(Gen AI) - Create Image Captioning Models: Quiz
1. What is the purpose of the decoder in an encoder-decoder model?
(1) To store the output data
(2) To learn the relationship between the input and output data
(3) To extract information from the input data
(4) To generate output data from the information extracted by the encoder 정답
2.What is the purpose of the encoder in an encoder-decoder model?
(1) To generate text captions for the image.
(2) To extract information from the image. 정답
(3) To translate text from one language to another.
(4) To answer your questions in an informative way, even if they are open ended, challenging, or strange.
3. What is the name of the model that is used to generate text captions for images?
(1) Bidirectional Encoder Representations from Transformers (BERT) model
(2) Encoder-decoder model 정답
(3) Image generation model
(4) Image classification model
4. What is the goal of the image captioning task?
(1) To answer your questions in an informative way, even if they are open ended, challenging, or strange.
(2) To write different creative text formats, like poems, code, scripts, musical pieces, email, letters, etc.
(3) To translate text from one language to another
(4) To generate text captions for images 정답
5.What is the name of the dataset the video uses to train the encoder-decoder model?
(1) ImageNet dataset
(2) COCO dataset 정답
(3) Fashion-MNIST dataset
(4) MNIST dataset
6.What is the purpose of the attention mechanism in an encoder-decoder model?
(1) To translate text from one language to another.
(2) To extract information from the image.
(3) To allow the decoder to focus on specific parts of the image when generating text captions. 정답
(4) To generate text captions for the image.
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Transformer Models and BERT Model: Quiz
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Attention Mechanism: Quiz
That's correct!
check
That's correct!
check
That's correct!
check
That's correct!
check
That's correct!
check
That's correct!
check
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Encoder-Decoder Architecture: Quiz
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Image Generation: Quiz
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Generative AI Fundamentals Quiz
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Responsible AI: Quiz