인공지능(ML)/생성형 AI
- [Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Generative AI Studio: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Create Image Captioning Models: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Transformer Models and BERT Model: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Attention Mechanism: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Encoder-Decoder Architecture: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Image Generation: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Generative AI Fundamentals Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Responsible AI: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Large Language Models: Quiz 2023.10.11
- [Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Generative AI: Quiz 2023.10.10
[Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Generative AI Studio: Quiz
[Google ML Study Jam] 생성형 AI(Gen AI) - Create Image Captioning Models: Quiz
1. What is the purpose of the decoder in an encoder-decoder model?
(1) To store the output data
(2) To learn the relationship between the input and output data
(3) To extract information from the input data
(4) To generate output data from the information extracted by the encoder 정답
2.What is the purpose of the encoder in an encoder-decoder model?
(1) To generate text captions for the image.
(2) To extract information from the image. 정답
(3) To translate text from one language to another.
(4) To answer your questions in an informative way, even if they are open ended, challenging, or strange.
3. What is the name of the model that is used to generate text captions for images?
(1) Bidirectional Encoder Representations from Transformers (BERT) model
(2) Encoder-decoder model 정답
(3) Image generation model
(4) Image classification model
4. What is the goal of the image captioning task?
(1) To answer your questions in an informative way, even if they are open ended, challenging, or strange.
(2) To write different creative text formats, like poems, code, scripts, musical pieces, email, letters, etc.
(3) To translate text from one language to another
(4) To generate text captions for images 정답
5.What is the name of the dataset the video uses to train the encoder-decoder model?
(1) ImageNet dataset
(2) COCO dataset 정답
(3) Fashion-MNIST dataset
(4) MNIST dataset
6.What is the purpose of the attention mechanism in an encoder-decoder model?
(1) To translate text from one language to another.
(2) To extract information from the image.
(3) To allow the decoder to focus on specific parts of the image when generating text captions. 정답
(4) To generate text captions for the image.
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Transformer Models and BERT Model: Quiz
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Attention Mechanism: Quiz
That's correct!
check
That's correct!
check
That's correct!
check
That's correct!
check
That's correct!
check
That's correct!
check
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Encoder-Decoder Architecture: Quiz
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Image Generation: Quiz
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Generative AI Fundamentals Quiz
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Responsible AI: Quiz
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Large Language Models: Quiz
1. What are some of the applications of LLMs? LLM의 응용 분야에는 어떤 것들이 있습니까?
(1) LLMs can be used for many tasks, including:1) Writing2) Translating3) Coding4) Answering questions5) Summarizing text6) Generating non-creative discrete probabilities, classes, and predictions.
LLM은 다음을 포함하는 많은 작업에 사용될 수 있다:1) 쓰기 2) 번역 3) 코딩 4) 질문에 대한 답 5) 텍스트 요약 6) 비창조 이산 확률, 클래스 및 예측 생성
(2) LLMs can be used for many tasks, including:1) Writing2) Translating3) Coding4) Answering questions5) Summarizing text6) Generating non-creative discrete probabilities
LLM은 다음을 포함하는 많은 작업에 사용될 수 있다:1) 쓰기 2) 번역 3) 코딩 4) 질문에 대한 답 5) 텍스트 요약 6) 비창조 이산 확률 생성
(3) LLMs can be used for many tasks, including:1) Writing2) Translating3) Coding4) Answering questions5) Summarizing text6) Generating non-creative discrete classes
LLM은 다음을 포함하는 많은 작업에 사용될 수 있다:1) 쓰기 2) 번역 3) 코딩 4) 질문에 대한 답 5) 텍스트 요약 6) 비창조 불연속 클래스 생성
(4) LLMs can be used for many tasks, including: 1) Writing2) Translating3) Coding4) Answering questions5) Summarizing text6) Generating non-creative discrete predictions
LLM은 다음을 포함하는 많은 작업에 사용될 수 있다:1) 쓰기 2) 번역 3) 코딩 4) 질문에 대한 답 5) 텍스트 요약 6) 비창조 불연속 예측 생성
(5) LLMs can be used for many tasks, including:1) Writing2) Translating3) Coding4) Answering questions5) Summarizing text6) Generating creativecontent
LLM은 다음을 포함하는 많은 작업에 사용될 수 있다:1) 쓰기 2) 번역 3) 코딩 4) 질문에 대한 답 5) 텍스트 요약 6) 창의적 콘텐츠 생성
정답은 (5)번
정답은 (2),(3),(4)번
3. What are some of the benefits of using large language models (LLMs)?
'인공지능(ML) > 생성형 AI' 카테고리의 다른 글
[Google ML Study Jam] 생성형 AI(Gen AI) - Introduction to Generative AI: Quiz
답은 (5)번